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Recognition of L2(q) by the Main Supergraph
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Abstract. Let G be a finite group. The main supergraph S(G) is a
graph with vertex set G in which two vertices x and y are adjacent if
and only if o(x) | o(y) or o(y) | o(x). In this paper, we will show that
G ∼= L2(q) if and only if S(G) ∼= S(L2(q)), where q is a prime power.
This work implies that there is not a solvable group that has the same
order type as the simple group L2(q).
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1. Introduction

Let G be a finite group and x ∈ G. The order of x is denoted by o(x).
The set of all element orders of G is denoted by πe(G) and the set of all prime
factors of |G| is denoted by π(G). It is clear that the set πe(G) is closed and
partially ordered by divisibility, and hence it is uniquely determined by µ(G),
the subset of its maximal elements. We set Mi = Mi(G) = |{g ∈ G| the order
of g is i}|.

We define the graph S(G) with the vertex set G such that two vertices x

and y are adjacent if and only if o(x) | o(y) or o(y) | o(x). This graph is called
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the main supergraph of power graph G and was introduced in [8]. The power
graph P(G) is a graph with the vertex set G, in which two distinct elements
are adjacent if one is a power of the other. The main properties of this graph
were investigated by Cameron [1] and Chakrabarty et al. [2]. The proper main
supergraph S∗(G) is the graph constructed from S(G) by removing the identity
element of G. We write x ∼ y when two vertices x and y are adjacent.

We say that groups G1 and G2 are of the same order type if and only if
Mt(G1) = Mt(G2) for all t. By the definition of the main supergraph, it is
clear that if G1 and G2 are groups with the same order type, then S(G1) ∼=
S(G2). The converse of this result is not generally correct. To prove, we
consider G1 = Z4 × Z4 and G2 = Z4 × Z2 × Z2. Since G1 and G2 are 2-
groups, we have S(G1) ∼= S(G2). But M4(G1) = 12 > 8 = M4(G2) and
M2(G1) = 3 < 7 = M2(G2).
In 1987, J. G. Thompson [16, Problem 12.37] posed the following problem:
Thompson’s Problem. Suppose that G1 and G2 are two groups of the same
order type. If G1 is solvable, is it true that G2 is also necessarily solvable?

Let nse(G) be the set of the number of elements of the same order in G.
If G1 and G2 are the same type, then nse(G1) = nse(G2) and |G1| = |G2|.
Therefore, if a group G has been uniquely determined by its order and nse(G),
then Thompson’s problem is true for G. In [11], the authors proved that no
solvable group has the same order type as L2(p), where p is a prime number.

Clearly, for two groups G1 and G2 that are the same order type, S(G1) ∼=
S(G2). So, if a group G has been uniquely determined by S(G), then Thomp-
son’s problem is true for G. In [12], the authors of this paper proved that
alternating group of degree p, p+1, p+2 and symmetric group of degree p are
uniquely determined by their main supergraph. Also, in [13], [14] and [15], it
is proved that the groups L2(p), PGL2(p), where p is prime, all of the sporadic
simple groups, the small Ree group 2G2(3

2n+1), where n is a natural number
and Suzuki group are uniquely determined by their main supergraph. In this
paper, we will show that L2(q), where q is a prime power uniquely determined
by their main supergraph. It follows that no solvable group has the same order
type as L2(q). In fact, the main theorem of our paper is as follow.

Theorem 1.1. Let S(G) ∼= S(L2(q)), where q is a prime power. Then G ∼=
L2(q).

As noted above, as an immediate consequence of Main Theorem, we have
that

Corollary 1.2. If G is a finite group with the same order type as L2(q), where
q is a prime power, then G is isomorphic to L2(q).

We construct the prime graph of G, which is denoted by Γ(G), as follows:
the vertex set is π(G) and two distinct vertices p and q are joined by an edge
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if and only if G has an element of order pq (p ̸= q). Let t(G) be the number
of connected components of Γ(G) and let π1, π2, . . . , πt(G) be the connected
components of Γ(G). If 2 ∈ π(G), then we always suppose 2 ∈ π1.

Given a finite group G, we can express |G| as a product of integers m1, m2,
. . . , mt(G), where π(mi) = πi for each i. These numbers mi are called the
order components of G. In particular, if mi is odd, then we call it an odd order
component of G (see [5]).

According to the classification theorem of finite simple groups and [10, 17,
18], we can list the order components of finite simple groups with disconnected
prime graphs as in Tables 1-4 in [4].

Let p be a prime. A group G is called a Cpp-group if p ∈ π(G) and p is an
isolated vertex of the prime graph of G, in other words, the centralizers of its
elements of order p in G are p-groups.

Throughout this paper we denote by ϕ(n), where n is a natural number,
Euler’s totient function. We denote by Pq a Sylow q-subgroup of G. The
other notations and terminologies in this paper are standard, and the reader is
referred to [6] if necessary.

2. Preliminary Results

We first quote some lemmas that are used in deducing the theorem of this
paper.

Lemma 2.1. [7] Let G be a finite group and m be a positive integer dividing
|G|. If Lm(G) = {g ∈ G|gm = 1}, then m | |Lm(G)|.

Remark 2.2. Let Mn be the number of elements of order n in G. We note that
Mn = kϕ(n), where k is the number of cyclic subgroups of order n in G. If
n | |G|, then by Lemma 2.1 we have

ϕ(n) | Mn

n |
∑

d|n Md

.

Definition 2.3. A group G is a 2-Frobenius group if there exists a normal
series 1⊴H ⊴K ⊴G such that K and G/H are Frobenius groups with kernels
H and K/H, respectively.

We quote some known results about Frobenius group and 2-Frobenius group,
which are useful in the sequel.

Lemma 2.4. [3] Let G be a 2-Frobenius group of even order. Then:
(a) t(G) = 2, π1 = π(G/K) ∪ π(H) and π2 = π(K/H);
(b) G/K and K/H are cyclic, |G/K| | (|K/H| − 1), (|G/K|, |K/H|) = 1 and
G/K ≲ Aut(K/H).
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Lemma 2.5. [3] Suppose that G is a Frobenius group of even order and H,
K are the Frobenius kernel and the Frobenius complement of G, respectively.
Then t(G) = 2, and the prime graph components of G are π(H) and π(K).

Lemma 2.6. [18] If G is a finite group such that t(G) ≥ 2, then G has one of
the following structures:
(a) G is a Frobenius group or a 2-Frobenius group;
(b) G has a normal series 1⊴H⊴K⊴G such that π(H)∪π(G/K) ⊆ π1 and K/H

is a non-abelian simple group. In particular, H is nilpotent, G/K ≲ Out(K/H)

and the odd order components of G are the odd order components of K/H.

3. Proof of Main Theorem

By the definition of the main supergraph and our assumption, we have |G| =
|L2(q)| and S∗(L2(q)) ∼= S∗(G). Let q = pn, where p is a prime number. By
[9, pp. 213] , we have µ(L2(q)) = {(q − 1)/2, p, (q + 1)/2}. Thus L2(q) has
not any element of order rs, where r | (q − 1)/2 and s | (q + 1)/2 and kp,
where k ∈ π(G)\{p}. It follows that S∗(G) is a disconnected graph with three
connected components. One of the connected components is a complete graph,
we denote it by K1 and the other of the connected components denoted by K2

and K3. Since L2(q) has not any element of order kp, where k ∈ π(G)\{p},
the order of complete connected component is Mp(L2(q)). On the other hand,
by [9, Theorems 8.2–8.5], Mp(L2(q)) = q2 − 1. Thus order of K1 is q2 − 1. We
prove the vertices of K1 are elements of order pk, where k ≥ 1 is an integer.

First, let x and y be two vertices of K1 such that o(x) = r, o(y) = s where
r, s ∈ π(G) and r ̸= s. Since K1 is a complete graph, we have x ∼ y, a
contradiction. So, the vertices of K1 are elements of order rk, where r is prime
and k ≥ 1 is an integer. We will show that r = p. Let the vertices of K1 be
all of x ∈ G such that o(x) = r, r2, ..., or rk (note that exp(Pr) = rk). Then
with considering n = |Pr| in Remark 2.2, |Pr| | (1 +Mr +Mr2 + ...+Mrk) =

1 + q2 − 1 = q2. It follows that r = p. Hence, the vertices of K1 are x ∈ G

such that o(x) = pk, where k ≥ 1 is an integer. It follows that p is an isolated
vertex of the prime graph of G.

Let x, y be two arbitrary vertices of K2 and K3, respectively such that
o(x) = r and o(y) = s, where r and s are primes. We prove that r and s are
not joined by an edge in the prime graph of G. Let r and s are joined by an
edge in the prime graph of G. Then rs ∈ πe(G). So, there exists an element
of order rs in G. Assume z ∈ G and o(z) = rs. By the definition of the main
supergraph x ∼ z and y ∼ z. Thus K2 and K3 are connected, a contradiction.
It follows that t(G) ≥ 3.

Since t(G) ≥ 3, Lemmas 2.4(a) and 2.5 show that G is neither a Frobenius
group nor a 2-Frobenius group. By Lemma 2.6, G has a normal series 1⊴N ◁
G1 ⊴G such that N is a nilpotent π1 -group, G/G1 is a solvable π1-group and
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G1/N is a simple Cpp-group. Since G is a Cpp-group, the odd order component
q of G is equal to a certain odd order component of G1/N (by the prime graph
components of G). In particular, t(G1/N) ≥ 3. Furthermore, G1/N ≲ G/N

≲ Aut(G1/N) by Lemma 2.6.
Now using the classification of finite simple groups and the results in Tables

1–4 in [4], we consider the following steps.
Step 1. We prove that G1/N can not be an alternating group An′ .

If G1/N ∼= An′ , then since the odd order components of An′ are primes,
say p

′ or p
′ − 2, we conclude that q = p

′ or q = p
′ − 2. In both cases, q is

a prime number. By Tables 1-4 in [4], we have G1/N ∼= Aq, Aq+1 or Aq+2.
Suppose G1/N ∼= Aq. It follows that q!

2 ≤ q(q2−1)
2|N | since G/N ≲Aut(G1/N),

or equivalently, |N |(q − 2)! ≤ q + 1 ≤ 2|N |(q − 2)!. Since q ≥ 5, we conclude
that 2(q− 2) ≤ (q − 2)(q− 3)! ≤ |N |(q− 2)! ≤ q + 1, which implies that q ≤ 5,
and so q = 5. We have already considered the case q is prime. Thus the case
G1/N ∼= Aq can be ruled out. The cases G1/N ∼= Aq+1 and Aq+2 can be ruled
out similarly.
Step 2. If G1/N ∼= Lr+1(q

′
), then since t(G1/N) ≥ 3 we distinguish the

following four cases.
2.1. G1/N ∼= L2(q

′
), where 4 | (q′

+ 1) and q
′ is a prime power. Then

q = q
′ or q

′
−1
2 . Moreover, q

′
(q

′2
−1)

2 ≤ q(q2−1)
2|N | in both cases. If q = q

′ , then
q(q2−1)

2 ≤ q(q2−1)
2|N | , which implies that |N | = 1. It follows that G ∼= L2(q).

If q = q
′
−1
2 , then q

′
= 2q + 1. Since q

′
(q

′2
−1)

2 | q(q2−1)
2|N | , we have that

(2q+1)[(2q+1)2−1] ≤ q(q2−1)
|N | . It follows that (2q+1)[(2q+1)2−1] ≤ q(q2−1),

which implies that 7q ≤ −1, a contradiction.
2.2. G1/N ∼= L2(q

′
), where 4 | (q′ − 1) and q

′ is a prime power. Then
q = q

′ or q
′
+1
2 . Moreover, q

′
(q

′2
−1)

2 ≤ q(q2−1)
2|N | in both cases. If q = q

′ , then
q(q2 − 1) ≤ q(q2−1)

|N | , which implies that |N | = 1. It follows that G ∼= L2(q).

If q = q
′
+1
2 , then q

′
= 2q − 1. Since q

′
(q

′2
−1)

2 | q(q2−1)
2|N | , we have that

(2q−1)[(2q−1)2−1] ≤ q(q2−1)
|N | . It follows that q[(2q−1)2−1] ≤ (2q−1)[(2q−

1)2 − 1] ≤ q(q2 − 1), which implies that 3q ≤ 1, a contradiction.
2.3. G1/N ∼= L2(q

′
), where 4 | q′ and q

′ is a prime power. First, let q be a
power of p ̸= 2. Then q = q

′
+1 or q′ −1, and q

′
(q

′2 −1) | q(q2−1)
2|N | . If q = q

′
+1,

then q
′
= q − 1. It follows that (q − 1)[(q − 1)2 − 1] ≤ q(q2−1)

2|N | , which implies
that q ≤ 5. Hence, q = 5, which implies that |N | = 1 and G ∼= L2(5).

If q = q
′ − 1, then q

′
= q + 1. Since q

′
(q

′2 − 1) | q(q2−1)
2|N | , we have that

(q + 1)[(q + 1)2 − 1] | q(q2−1)
2|N | . It follows that q2 + 2q | q(q2 − 1), which implies

that q + 2 | q − 1, a contradiction.
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Now, let q be a power of 2. Then q = q
′
+1, or q′ , and q

′
(q

′2 −1) | q(q2−1)
|N | . If

q = q
′
+1, then q

′
= q− 1. It follows that (q− 1)[(q− 1)2− 1] ≤ q(q2−1)

|N | , which
implies that q ≤ 5. Hence, q = 4, which implies that q

′
= 3, a contradiction.

If q = q
′ , then q(q2 − 1) ≤ q(q2−1)

|N | , which implies that |N | = 1. It follows
that G ∼= L2(q).

2.4. G1/N ∼= L3(2) or L3(4). If G1/N ∼= L3(2) ∼= L2(7), then q must be
equal to 3, 7. Since q > 3, q = 7, which implies that |N | = 1 and G ∼= L2(7),
as desired.

If G1/N ∼= L3(4), then q must be equal to 3, 5, 7 or 9. So, q = 5, 7, or 9.
Since |L3(4)| | |G|, we get a contradiction.
Step 3. If G1/N ∼= F4(q

′
), where q

′ is a prime power, then we distinguish the
following two cases.

3.1. Suppose G1/N ∼= F4(q
′
), where q

′ is an odd prime power. Then q =

q
′4−q

′2
+1 and q

′24
(q

′8−1)(q
′6−1)2(q

′4−1) | q2−1
2 (or q2−1 when q is even). Thus

q2 = (q
′4 − q

′2
+1)2 ≤ q

′8 and q
′24

< q
′24

(q
′8 −1)(q

′6 −1)2(q
′4 −1) ≤ q2−1

2 < q2.
Hence, q′24

< q
′8 , which implies that q

′
< 1, a contradiction.

3.2. Suppose G1/N ∼= F4(q
′
), where 2 | q′ and q

′
> 2. Then q = q

′4
+ 1 or

q
′4 − q

′2 + 1. If q = q
′4
+ 1, then q

′24
(q

′6 − 1)2(q
′4 − 1)2(q

′4 − q
′2
+ 1) | q2−1

2 (or
q2−1 when q is even). Thus q2 = (q

′4
+1)2 < q

′10 and q
′24

< q
′24

(q
′6 −1)2(q

′4 −
1)2(q

′4 − q
′2
+ 1) ≤ q2−1

2 < q2. Hence, q′24
< q

′10 , which implies that q
′
< 1, a

contradiction. If q = q
′4 − q

′2
+1, then q

′24
(q

′6 − 1)2(q
′4 − 1)2(q

′4
+1) | q2−1

2 (or
q2 − 1 when q is even). Thus q2 = (q

′4 − q
′2
+ 1)2 < q

′8 and q
′24

< q
′24

(q
′6 −

1)2(q
′4 − 1)2(q

′4
+ 1) ≤ q2−1

2 < q2. Hence q
′24

< q
′8 , which implies that q

′
< 1,

a contradiction.
Step 4. If G1/N ∼=2 F4(q

′
), where q

′
= 22t+1 > 2, then q = q

′2 ±
√

2q′3 + q
′ ±√

2q′+1 and q
′12

(q
′4−1)(q

′3
+1)(q

′2
+1)(q

′−1)(q
′2±

√
2q′3+q

′±
√

2q′+1) | q2−1
2

(or q2−1 when q is even). Thus q2 = (q
′2 ±

√
2q′3 + q

′ ±
√
2q′ +1)2 ≤ q

′10 and
q
′12

< q
′12

(q
′4−1)(q

′3
+1)(q

′2
+1)(q

′−1)(q
′2±

√
2q′3+q

′±
√

2q′+1) ≤ q2−1
2 < q2.

Hence, q′12
< q

′10 , which implies that q
′
< 1, a contradiction.

Step 5. If G1/N ∼= G2(q
′
), where 3 | q′ . Then q = q

′2
+ q

′
+ 1 or q

′2 − q
′
+ 1.

If q = q
′2
+ q

′
+ 1, then q

′6
(q

′2 − 1)2(q
′2 − q

′
+ 1) | q2−1

2 (or q2 − 1 when q

is even). Thus q2 = (q
′2
+ q

′
+ 1)2 ≤ (q

′3 − 1)2 ≤ q
′6 and q

′6
(q

′2 − 1) < q
′6

(q
′2 − 1)2(q

′2 − q
′
+ 1) ≤ q2−1

2 < q2. Hence, q′6
(q

′2 − 1) < q
′6 , which implies

that q
′
< 2, a contradiction.

If q = q
′2−q

′
+1, then q

′6
(q

′2−1)2(q
′2
+q

′
+1) | q2−1

2 (or q2−1 when q is even).
Thus q2 = (q

′2 −q
′
+1)2 ≤ q

′4 and q
′6
< q

′6
(q

′2 −1)2(q
′2
+q

′
+1) ≤ q2−1

2 < q2.
Hence, q′6

< q
′4 , which implies that q

′
< 1, a contradiction.

Step 6. If G1/N ∼=2 G2(q
′
), where q

′
= 32t+1 > 3, then q = q

′ ±
√
3q′ + 1

and q
′3
(q

′2 − 1)(q
′ ±

√
3q′ + 1) | q2−1

2 (or q2 − 1 when q is even). Thus q2 =



Recognition of L2(q) by the main supergraph 143

(q
′ ±

√
3q′ + 1)2 ≤ [(q

′
+ 1)2 − 3q

′
]2 = (q

′2 − q
′
+ 1)2 < q

′4 and q
′3
(q

′2 − 1) <

q
′3
(q

′2 −1)(q
′ ±

√
3q′ +1) ≤ q2−1

2 < q2. Hence, q′3
(q

′2 −1) < q
′4 , which implies

that q
′
< 2, a contradiction.

Step 7. If G1/N ∼=2 B2(q
′
), where q

′
= 22t+1 > 2, then we distinguish the

following three cases.
7.1. Suppose q = q

′ − 1. Then q
′
= q + 1. Since q

′2
(q

′ −
√

2q′ + 1)(q
′
+√

2q′ +1) | q2−1
2 (or q2−1 when q is even), it follows that (q+1)2[(q+1)2+1] ≤

q2−1
2 < q2, a contradiction.
7.2. Suppose q = q

′−
√
2q′+1. Since q′2

(q
′−1)(q

′
+
√
2q′+1) | q2−1

2 (or q2−1

when q is even) and q
′
> 2, it follows that q

′2
(q

′ −
√
2q′ +1)(q

′
+
√
2q′ +1) ≤

q
′2
(q

′ − 1)(q
′
+

√
2q′ + 1) ≤ (q2 − 1)/2 < q2 = (q

′ −
√

2q′ + 1)2. Therefore
q
′2
(q

′
+
√

2q′ + 1) < q
′ −

√
2q′ + 1 < q

′
+
√
2q′ + 1, which shows that q

′2 < 1,
a contradiction.

7.3. Suppose q = q
′
+

√
2q′ + 1. Since q

′2
(q

′ − 1)(q
′ −

√
2q′ + 1) | q2−1

2 ,
it follows that q

′2
(q

′ −
√

2q′ + 1)2 ≤ q
′2
(q

′ − 1)(q
′ −

√
2q′ + 1) ≤ q2−1

2 <

q2 = (q
′
+

√
2q′ + 1)2. Therefore q

′
(q

′ −
√
2q′) < q

′
(q

′ −
√
2q′ + 1) < q

′
+√

2q′ + 1 < 2q
′
+

√
2q′ , which shows that q

′
(q

′ −
√
2q′) < 2q

′
+

√
2q′ . Thus√

q′(q
′ −

√
2q′) < 2

√
q′ +

√
2 < 3

√
q′ . Hence, q′ −

√
2q′ < 3. It follows that

4 −
√
7 < q

′
< 4 +

√
7, which shows that 1 < q

′
< 7. This is a contradiction

since q
′
= 22t+1 ≥ 8.

Step 8. If G1/N ∼= E7(2), E7(3), or 2E6(2).
8.1. If G1/N ∼= E7(2), then |G1/N | = |E7(2)| = 263 · 311 · 52 · 73 · 11 · 13 ·

17 · 19 · 31 · 43 · 73 · 127 and q = 73 or 127. Because |G1/N | ∤ |G| = |L2(q)|, we
get a contradiction.

8.2. If G1/N ∼= E7(3), then |G1/N | = |E7(3)| = 223 · 363 · 52 · 73 · 112 ·
133 · 17 · 19 · 37 · 41 · 61 · 73 · 547 · 757 · 1093 and q = 757 or 1093. Because
|G1/N | ∤ |G| = |L2(q)|, we get a contradiction.

8.3. If G1/N ∼=2 E6(2), then |G1/N | = |2E6(2)| = 236 ·39 ·52 ·72 ·11·13·17·19
and q = 13, 17 or 19. We get a contradiction by |G1/N | ∤ |G| = |L2(q)|.
Step 9. If G1/N is a sporadic simple group, then q = 5, 7, 11, 13, 17, 19, 23, 29,
31, 37, 41, 43, 47, 59, 67, or 71. It is easy to check that |G1/N | ∤ |G| = |L2(q)|,
we get a contradiction.

The other steps are very similar and we omit them.
Now, we have just seen if G1/N ∼= L2(q

′
), where 4 | (q′ −1) and q

′ is a prime
power, G1/N ∼= L2(q

′
), where 4 | (q′

+ 1) and q
′ is a prime power or G1/N

∼= L2(q
′
), where 4 | q′ and q

′ is a prime power, then q = q
′ and G ∼= L2(q). In

the other cases we get a contradiction.
This completes the proof of the main theorem.
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