DOI: 10.29252/ijmsi.16.1.137

Recognition of $L_2(q)$ by the Main Supergraph

Seyed Sadegh Salehi Amiri a , Alireza Khalili Asboei b,*

 $^a\mathrm{Department}$ of Mathematics, Babol Branch, Islamic Azad University, Babol, Iran.

^bDepartment of Mathematics, Farhangian University, Tehran, Iran.

E-mail: salehisss@baboliau.ac.ir
E-mail: a.khalili@cfu.ac.ir

ABSTRACT. Let G be a finite group. The main supergraph $\mathcal{S}(G)$ is a graph with vertex set G in which two vertices x and y are adjacent if and only if $o(x) \mid o(y)$ or $o(y) \mid o(x)$. In this paper, we will show that $G \cong L_2(q)$ if and only if $\mathcal{S}(G) \cong \mathcal{S}(L_2(q))$, where q is a prime power. This work implies that there is not a solvable group that has the same order type as the simple group $L_2(q)$.

Keywords: Graph, Main supergraph, Thompson's problem.

2010 Mathematics subject classification: 20D08, 05C25.

1. Introduction

Let G be a finite group and $x \in G$. The order of x is denoted by o(x). The set of all element orders of G is denoted by $\pi_e(G)$ and the set of all prime factors of |G| is denoted by $\pi(G)$. It is clear that the set $\pi_e(G)$ is closed and partially ordered by divisibility, and hence it is uniquely determined by $\mu(G)$, the subset of its maximal elements. We set $M_i = M_i(G) = |\{g \in G | \text{ the order of } g \text{ is } i\}|$.

We define the graph S(G) with the vertex set G such that two vertices x and y are adjacent if and only if $o(x) \mid o(y)$ or $o(y) \mid o(x)$. This graph is called

^{*}Corresponding Author

the main supergraph of power graph G and was introduced in [8]. The power graph $\mathcal{P}(G)$ is a graph with the vertex set G, in which two distinct elements are adjacent if one is a power of the other. The main properties of this graph were investigated by Cameron [1] and Chakrabarty et al. [2]. The proper main supergraph $\mathcal{S}^*(G)$ is the graph constructed from $\mathcal{S}(G)$ by removing the identity element of G. We write $x \sim y$ when two vertices x and y are adjacent.

We say that groups G_1 and G_2 are of the same order type if and only if $M_t(G_1) = M_t(G_2)$ for all t. By the definition of the main supergraph, it is clear that if G_1 and G_2 are groups with the same order type, then $\mathcal{S}(G_1) \cong \mathcal{S}(G_2)$. The converse of this result is not generally correct. To prove, we consider $G_1 = Z_4 \times Z_4$ and $G_2 = Z_4 \times Z_2 \times Z_2$. Since G_1 and G_2 are 2-groups, we have $\mathcal{S}(G_1) \cong \mathcal{S}(G_2)$. But $M_4(G_1) = 12 > 8 = M_4(G_2)$ and $M_2(G_1) = 3 < 7 = M_2(G_2)$.

In 1987, J. G. Thompson [16, Problem 12.37] posed the following problem: **Thompson's Problem.** Suppose that G_1 and G_2 are two groups of the same order type. If G_1 is solvable, is it true that G_2 is also necessarily solvable?

Let $\operatorname{nse}(G)$ be the set of the number of elements of the same order in G. If G_1 and G_2 are the same type, then $\operatorname{nse}(G_1) = \operatorname{nse}(G_2)$ and $|G_1| = |G_2|$. Therefore, if a group G has been uniquely determined by its order and $\operatorname{nse}(G)$, then Thompson's problem is true for G. In [11], the authors proved that no solvable group has the same order type as $L_2(p)$, where p is a prime number.

Clearly, for two groups G_1 and G_2 that are the same order type, $S(G_1) \cong S(G_2)$. So, if a group G has been uniquely determined by S(G), then Thompson's problem is true for G. In [12], the authors of this paper proved that alternating group of degree p, p+1, p+2 and symmetric group of degree p are uniquely determined by their main supergraph. Also, in [13], [14] and [15], it is proved that the groups $L_2(p)$, $PGL_2(p)$, where p is prime, all of the sporadic simple groups, the small Ree group ${}^2G_2(3^{2n+1})$, where p is a natural number and Suzuki group are uniquely determined by their main supergraph. In this paper, we will show that $L_2(q)$, where q is a prime power uniquely determined by their main supergraph. It follows that no solvable group has the same order type as $L_2(q)$. In fact, the main theorem of our paper is as follow.

Theorem 1.1. Let $S(G) \cong S(L_2(q))$, where q is a prime power. Then $G \cong L_2(q)$.

As noted above, as an immediate consequence of Main Theorem, we have that

Corollary 1.2. If G is a finite group with the same order type as $L_2(q)$, where q is a prime power, then G is isomorphic to $L_2(q)$.

We construct the *prime graph* of G, which is denoted by $\Gamma(G)$, as follows: the vertex set is $\pi(G)$ and two distinct vertices p and q are joined by an edge

if and only if G has an element of order pq $(p \neq q)$. Let t(G) be the number of connected components of $\Gamma(G)$ and let $\pi_1, \pi_2, \ldots, \pi_{t(G)}$ be the connected components of $\Gamma(G)$. If $2 \in \pi(G)$, then we always suppose $2 \in \pi_1$.

Given a finite group G, we can express |G| as a product of integers $m_1, m_2, \ldots, m_{t(G)}$, where $\pi(m_i) = \pi_i$ for each i. These numbers m_i are called the order components of G. In particular, if m_i is odd, then we call it an odd order component of G (see [5]).

According to the classification theorem of finite simple groups and [10, 17, 18], we can list the order components of finite simple groups with disconnected prime graphs as in Tables 1-4 in [4].

Let p be a prime. A group G is called a C_{pp} -group if $p \in \pi(G)$ and p is an isolated vertex of the prime graph of G, in other words, the centralizers of its elements of order p in G are p-groups.

Throughout this paper we denote by $\phi(n)$, where n is a natural number, Euler's totient function. We denote by P_q a Sylow q-subgroup of G. The other notations and terminologies in this paper are standard, and the reader is referred to [6] if necessary.

2. Preliminary Results

We first quote some lemmas that are used in deducing the theorem of this paper.

Lemma 2.1. [7] Let G be a finite group and m be a positive integer dividing |G|. If $L_m(G) = \{g \in G | g^m = 1\}$, then $m \mid |L_m(G)|$.

Remark 2.2. Let M_n be the number of elements of order n in G. We note that $M_n = k\phi(n)$, where k is the number of cyclic subgroups of order n in G. If $n \mid |G|$, then by Lemma 2.1 we have

$$\begin{cases}
\phi(n) \mid M_n \\
n \mid \sum_{d \mid n} M_d
\end{cases}$$

Definition 2.3. A group G is a 2-Frobenius group if there exists a normal series $1 \subseteq H \subseteq K \subseteq G$ such that K and G/H are Frobenius groups with kernels H and K/H, respectively.

We quote some known results about Frobenius group and 2-Frobenius group, which are useful in the sequel.

Lemma 2.4. [3] Let G be a 2-Frobenius group of even order. Then: (a) t(G) = 2, $\pi_1 = \pi(G/K) \cup \pi(H)$ and $\pi_2 = \pi(K/H)$; (b) G/K and K/H are cyclic, $|G/K| \mid (|K/H| - 1)$, (|G/K|, |K/H|) = 1 and $G/K \lesssim \operatorname{Aut}(K/H)$. **Lemma 2.5.** [3] Suppose that G is a Frobenius group of even order and H, K are the Frobenius kernel and the Frobenius complement of G, respectively. Then t(G) = 2, and the prime graph components of G are $\pi(H)$ and $\pi(K)$.

Lemma 2.6. [18] If G is a finite group such that $t(G) \ge 2$, then G has one of the following structures:

- (a) G is a Frobenius group or a 2-Frobenius group;
- (b) G has a normal series $1 \unlhd H \unlhd K \unlhd G$ such that $\pi(H) \cup \pi(G/K) \subseteq \pi_1$ and K/H is a non-abelian simple group. In particular, H is nilpotent, $G/K \lesssim \operatorname{Out}(K/H)$ and the odd order components of G are the odd order components of K/H.

3. Proof of Main Theorem

By the definition of the main supergraph and our assumption, we have $|G| = |L_2(q)|$ and $\mathcal{S}^*(L_2(q)) \cong \mathcal{S}^*(G)$. Let $q = p^n$, where p is a prime number. By [9, pp. 213], we have $\mu(L_2(q)) = \{(q-1)/2, p, (q+1)/2\}$. Thus $L_2(q)$ has not any element of order rs, where $r \mid (q-1)/2$ and $s \mid (q+1)/2$ and kp, where $k \in \pi(G) \setminus \{p\}$. It follows that $\mathcal{S}^*(G)$ is a disconnected graph with three connected components. One of the connected components is a complete graph, we denote it by K_1 and the other of the connected components denoted by K_2 and K_3 . Since $L_2(q)$ has not any element of order kp, where $k \in \pi(G) \setminus \{p\}$, the order of complete connected component is $M_p(L_2(q))$. On the other hand, by [9, Theorems 8.2–8.5], $M_p(L_2(q)) = q^2 - 1$. Thus order of K_1 is $q^2 - 1$. We prove the vertices of K_1 are elements of order p^k , where $k \geq 1$ is an integer.

First, let x and y be two vertices of K_1 such that o(x) = r, o(y) = s where $r, s \in \pi(G)$ and $r \neq s$. Since K_1 is a complete graph, we have $x \sim y$, a contradiction. So, the vertices of K_1 are elements of order r^k , where r is prime and $k \geq 1$ is an integer. We will show that r = p. Let the vertices of K_1 be all of $x \in G$ such that o(x) = r, r^2 , ..., or r^k (note that $\exp(P_r) = r^k$). Then with considering $n = |P_r|$ in Remark 2.2, $|P_r| \mid (1 + M_r + M_{r^2} + ... + M_{r^k}) = 1 + q^2 - 1 = q^2$. It follows that r = p. Hence, the vertices of K_1 are $x \in G$ such that $o(x) = p^k$, where $k \geq 1$ is an integer. It follows that p is an isolated vertex of the prime graph of G.

Let x, y be two arbitrary vertices of K_2 and K_3 , respectively such that o(x) = r and o(y) = s, where r and s are primes. We prove that r and s are not joined by an edge in the prime graph of G. Let r and s are joined by an edge in the prime graph of G. Then $rs \in \pi_e(G)$. So, there exists an element of order rs in G. Assume $z \in G$ and o(z) = rs. By the definition of the main supergraph $x \sim z$ and $y \sim z$. Thus K_2 and K_3 are connected, a contradiction. It follows that t(G) > 3.

Since $t(G) \geq 3$, Lemmas 2.4(a) and 2.5 show that G is neither a Frobenius group nor a 2-Frobenius group. By Lemma 2.6, G has a normal series $1 \leq N < G_1 \leq G$ such that N is a nilpotent π_1 -group, G/G_1 is a solvable π_1 -group and

 G_1/N is a simple C_{pp} -group. Since G is a C_{pp} -group, the odd order component q of G is equal to a certain odd order component of G_1/N (by the prime graph components of G). In particular, $t(G_1/N) \geq 3$. Furthermore, $G_1/N \lesssim G/N \lesssim \operatorname{Aut}(G_1/N)$ by Lemma 2.6.

Now using the classification of finite simple groups and the results in Tables 1–4 in [4], we consider the following steps.

Step 1. We prove that G_1/N can not be an alternating group $A_{n'}$.

If $G_1/N\cong A_{n'}$, then since the odd order components of $A_{n'}$ are primes, say $p^{'}$ or $p^{'}-2$, we conclude that $q=p^{'}$ or $q=p^{'}-2$. In both cases, q is a prime number. By Tables 1-4 in [4], we have $G_1/N\cong A_q$, A_{q+1} or A_{q+2} . Suppose $G_1/N\cong A_q$. It follows that $\frac{q!}{2}\leq \frac{q(q^2-1)}{2|N|}$ since $G/N\lesssim \operatorname{Aut}(G_1/N)$, or equivalently, $|N|(q-2)!\leq q+1\leq 2|N|(q-2)!$. Since $q\geq 5$, we conclude that $2(q-2)\leq (q-2)(q-3)!\leq |N|(q-2)!\leq q+1$, which implies that $q\leq 5$, and so q=5. We have already considered the case q is prime. Thus the case $G_1/N\cong A_q$ can be ruled out. The cases $G_1/N\cong A_{q+1}$ and A_{q+2} can be ruled out similarly.

Step 2. If $G_1/N \cong L_{r+1}(q')$, then since $t(G_1/N) \geq 3$ we distinguish the following four cases.

2.1. $G_1/N \cong L_2(q')$, where $4 \mid (q'+1)$ and q' is a prime power. Then q = q' or $\frac{q'-1}{2}$. Moreover, $\frac{q'(q'^2-1)}{2} \leq \frac{q(q^2-1)}{2|N|}$ in both cases. If q = q', then $\frac{q(q^2-1)}{2} \leq \frac{q(q^2-1)}{2|N|}$, which implies that |N| = 1. It follows that $G \cong L_2(q)$.

If $q = \frac{q'-1}{2}$, then q' = 2q+1. Since $\frac{q'(q'^2-1)}{2} \mid \frac{q(q^2-1)}{2|N|}$, we have that $(2q+1)[(2q+1)^2-1] \leq \frac{q(q^2-1)}{|N|}$. It follows that $(2q+1)[(2q+1)^2-1] \leq q(q^2-1)$, which implies that $7q \leq -1$, a contradiction.

2.2. $G_1/N \cong L_2(q')$, where $4 \mid (q'-1)$ and q' is a prime power. Then q=q' or $\frac{q'+1}{2}$. Moreover, $\frac{q'(q'^2-1)}{2} \leq \frac{q(q^2-1)}{2|N|}$ in both cases. If q=q', then $q(q^2-1) \leq \frac{q(q^2-1)}{|N|}$, which implies that |N|=1. It follows that $G \cong L_2(q)$.

If $q = \frac{q'+1}{2}$, then q' = 2q-1. Since $\frac{q'(q'^2-1)}{2} \mid \frac{q(q^2-1)}{2|N|}$, we have that $(2q-1)[(2q-1)^2-1] \leq \frac{q(q^2-1)}{|N|}$. It follows that $q[(2q-1)^2-1] \leq (2q-1)[(2q-1)^2-1] \leq q(q^2-1)$, which implies that $3q \leq 1$, a contradiction.

2.3. $G_1/N \cong L_2(q')$, where $4 \mid q'$ and q' is a prime power. First, let q be a power of $p \neq 2$. Then q = q' + 1 or q' - 1, and $q'(q'^2 - 1) \mid \frac{q(q^2 - 1)}{2|N|}$. If q = q' + 1, then q' = q - 1. It follows that $(q - 1)[(q - 1)^2 - 1] \leq \frac{q(q^2 - 1)}{2|N|}$, which implies that $q \leq 5$. Hence, q = 5, which implies that |N| = 1 and $G \cong L_2(5)$. If q = q' - 1, then q' = q + 1. Since $q'(q'^2 - 1) \mid \frac{q(q^2 - 1)}{2|N|}$, we have that

If q = q' - 1, then q' = q + 1. Since $q'(q'^2 - 1) \mid \frac{q(q^2 - 1)}{2|N|}$, we have that $(q+1)[(q+1)^2 - 1] \mid \frac{q(q^2 - 1)}{2|N|}$. It follows that $q^2 + 2q \mid q(q^2 - 1)$, which implies that $q + 2 \mid q - 1$, a contradiction.

Now, let q be a power of 2. Then q = q' + 1, or q', and $q'(q'^{2} - 1) \mid \frac{q(q^{2} - 1)}{|N|}$. If q = q' + 1, then q' = q - 1. It follows that $(q - 1)[(q - 1)^2 - 1] \le \frac{q(q^2 - 1)}{|N|}$, which implies that $q \leq 5$. Hence, q = 4, which implies that q' = 3, a contradiction.

If q=q', then $q(q^2-1) \leq \frac{q(q^2-1)}{|N|}$, which implies that |N|=1. It follows

2.4. $G_1/N \cong L_3(2)$ or $L_3(4)$. If $G_1/N \cong L_3(2) \cong L_2(7)$, then q must be equal to 3, 7. Since q > 3, q = 7, which implies that |N| = 1 and $G \cong L_2(7)$, as desired.

If $G_1/N \cong L_3(4)$, then q must be equal to 3, 5, 7 or 9. So, q=5, 7, or 9. Since $|L_3(4)| | |G|$, we get a contradiction.

Step 3. If $G_1/N \cong F_4(q')$, where q' is a prime power, then we distinguish the following two cases.

3.1. Suppose $G_1/N \cong F_4(q^{'})$, where $q^{'}$ is an odd prime power. Then $q=q^{'^4}-q^{'^2}+1$ and $q^{'^{24}}(q^{'^8}-1)(q^{'^6}-1)^2(q^{'^4}-1)\mid \frac{q^2-1}{2} \text{ (or } q^2-1 \text{ when } q \text{ is even)}$. Thus $q^2=(q^{'^4}-q^{'^2}+1)^2\leq q^{'^8}$ and $q^{'^{24}}< q^{'^{24}}(q^{'^8}-1)(q^{'^6}-1)^2(q^{'^4}-1)\leq \frac{q^2-1}{2}< q^2$. Hence, $q^{''^{24}} < q^{'^{8}}$, which implies that $q^{'} < 1$, a contradiction.

Hence, q < q, which implies that q < 1, a contradiction. **3.2.** Suppose $G_1/N \cong F_4(q')$, where $2 \mid q'$ and q' > 2. Then $q = q'^4 + 1$ or $q'^4 - q'^2 + 1$. If $q = q'^4 + 1$, then $q'^{24}(q'^6 - 1)^2(q'^4 - 1)^2(q'^4 - q'^2 + 1) \mid \frac{q^2 - 1}{2}$ (or $q^2 - 1$ when q is even). Thus $q^2 = (q'^4 + 1)^2 < q'^{10}$ and $q'^{24} < q'^{24}(q'^6 - 1)^2(q'^4 - 1)^2(q'^$ a contradiction.

Step 4. If $G_1/N \cong^2 F_4(q')$, where $q' = 2^{2t+1} > 2$, then $q = q'^2 \pm \sqrt{2q'^3} + q' \pm \sqrt{2q'} + 1$ and $q'^{12}(q'^4 - 1)(q'^3 + 1)(q'^2 + 1)(q' - 1)(q'^2 \pm \sqrt{2q'^3} + q' \pm \sqrt{2q'} + 1) \mid \frac{q^2 - 1}{2}$ (or $q^2 - 1$ when q is even). Thus $q^2 = (q'^2 \pm \sqrt{2q'^3} + q' \pm \sqrt{2q'} + 1)^2 \le q'^{10}$ and $q'^{12} < q'^{12}(q'^4-1)(q'^3+1)(q'^2+1)(q'-1)(q'^2\pm\sqrt{2q'^3}+q'\pm\sqrt{2q'}+1) \le \frac{q^2-1}{2} < q^2$. Hence, $q'^{12} < q'^{10}$, which implies that q' < 1, a contradiction. Step 5. If $G_1/N \cong G_2(q')$, where $3 \mid q'$. Then $q = q'^2 + q' + 1$ or $q'^2 - q' + 1$.

If $q = q'^2 + q' + 1$, then $q'^6(q'^2 - 1)^2(q'^2 - q' + 1) \mid \frac{q^2 - 1}{2}$ (or $q^2 - 1$ when q is even). Thus $q^2 = (q'^2 + q' + 1)^2 \le (q'^3 - 1)^2 \le q'^6$ and $q'^6(q'^2 - 1) < q'^6(q'^2 - 1)^2(q'^2 - q' + 1) \le \frac{q^2 - 1}{2} < q^2$. Hence, $q'^6(q'^2 - 1) < q'^6$, which implies that q' < 2, a contradiction.

If $q = q^{'2} - q' + 1$, then $q^{'6}(q^{'2} - 1)^2(q^{'2} + q' + 1) \mid \frac{q^2 - 1}{2}$ (or $q^2 - 1$ when q is even). Thus $q^2 = (q'^2 - q' + 1)^2 \le q'^4$ and $q'^6 < q'^6 (q'^2 - 1)^2 (q'^2 + q' + 1) \le \frac{q^2 - 1}{2} < q^2$. Hence, $q^{'6} < q^{'4}$, which implies that $q^{'} < 1$, a contradiction. **Step 6.** If $G_1/N \cong^2 G_2(q^{'})$, where $q^{'} = 3^{2t+1} > 3$, then $q = q^{'} \pm \sqrt{3q^{'}} + 1$

and $q'^3(q'^2-1)(q'\pm\sqrt{3q'}+1)\mid \frac{q^2-1}{2}$ (or q^2-1 when q is even). Thus $q^2=$

 $(q^{'}\pm\sqrt{3q^{'}}+1)^{2}\leq[(q^{'}+1)^{2}-3q^{'}]^{2}=(q^{'^{2}}-q^{'}+1)^{2}< q^{'^{4}} \text{ and } q^{'^{3}}(q^{'^{2}}-1)< q^{'^{3}}(q^{'^{2}}-1)(q^{'}\pm\sqrt{3q^{'}}+1)\leq\frac{q^{2}-1}{2}< q^{2}. \text{ Hence, } q^{'^{3}}(q^{'^{2}}-1)< q^{'^{4}}, \text{ which implies that } q^{'}<2, \text{ a contradiction.}$

Step 7. If $G_1/N \cong^2 B_2(q')$, where $q' = 2^{2t+1} > 2$, then we distinguish the following three cases.

7.1. Suppose q = q' - 1. Then q' = q + 1. Since $q'^2(q' - \sqrt{2q'} + 1)(q' + \sqrt{2q'} + 1) \mid \frac{q^2 - 1}{2} \text{ (or } q^2 - 1 \text{ when } q \text{ is even), it follows that } (q + 1)^2[(q + 1)^2 + 1] \le \frac{q^2 - 1}{2} < q^2$, a contradiction.

7.2. Suppose $q = q^{'} - \sqrt{2q^{'}} + 1$. Since $q^{'^2}(q^{'} - 1)(q^{'} + \sqrt{2q^{'}} + 1) \mid \frac{q^2 - 1}{2}$ (or $q^2 - 1$ when q is even) and $q^{'} > 2$, it follows that $q^{'^2}(q^{'} - \sqrt{2q^{'}} + 1)(q^{'} + \sqrt{2q^{'}} + 1) \le q^{'^2}(q^{'} - 1)(q^{'} + \sqrt{2q^{'}} + 1) \le (q^2 - 1)/2 < q^2 = (q^{'} - \sqrt{2q^{'}} + 1)^2$. Therefore $q^{'^2}(q^{'} + \sqrt{2q^{'}} + 1) < q^{'} - \sqrt{2q^{'}} + 1 < q^{'} + \sqrt{2q^{'}} + 1$, which shows that $q^{'^2} < 1$, a contradiction.

7.3. Suppose $q=q^{'}+\sqrt{2q^{'}}+1$. Since $q^{'^2}(q^{'}-1)(q^{'}-\sqrt{2q^{'}}+1)\mid \frac{q^2-1}{2}$, it follows that $q^{'^2}(q^{'}-\sqrt{2q^{'}}+1)^2\leq q^{'^2}(q^{'}-1)(q^{'}-\sqrt{2q^{'}}+1)\leq \frac{q^2-1}{2}< q^2=(q^{'}+\sqrt{2q^{'}}+1)^2$. Therefore $q^{'}(q^{'}-\sqrt{2q^{'}})< q^{'}(q^{'}-\sqrt{2q^{'}}+1)< q^{'}+\sqrt{2q^{'}}+1<2q^{'}+\sqrt{2q^{'}}$, which shows that $q^{'}(q^{'}-\sqrt{2q^{'}})<2q^{'}+\sqrt{2q^{'}}$. Thus $\sqrt{q^{'}}(q^{'}-\sqrt{2q^{'}})<2\sqrt{q^{'}}+\sqrt{2}<3\sqrt{q^{'}}$. Hence, $q^{'}-\sqrt{2q^{'}}<3$. It follows that $4-\sqrt{7}< q^{'}<4+\sqrt{7}$, which shows that $1< q^{'}<7$. This is a contradiction since $q^{'}=2^{2t+1}\geq 8$.

Step 8. If $G_1/N \cong E_7(2)$, $E_7(3)$, or ${}^2E_6(2)$.

8.1. If $G_1/N \cong E_7(2)$, then $|G_1/N| = |E_7(2)| = 2^{63} \cdot 3^{11} \cdot 5^2 \cdot 7^3 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 31 \cdot 43 \cdot 73 \cdot 127$ and q = 73 or 127. Because $|G_1/N| \nmid |G| = |L_2(q)|$, we get a contradiction.

8.2. If $G_1/N \cong E_7(3)$, then $|G_1/N| = |E_7(3)| = 2^{23} \cdot 3^{63} \cdot 5^2 \cdot 7^3 \cdot 11^2 \cdot 13^3 \cdot 17 \cdot 19 \cdot 37 \cdot 41 \cdot 61 \cdot 73 \cdot 547 \cdot 757 \cdot 1093$ and q = 757 or 1093. Because $|G_1/N| \nmid |G| = |L_2(q)|$, we get a contradiction.

8.3. If $G_1/N \cong^2 E_6(2)$, then $|G_1/N| = |^2 E_6(2)| = 2^{36} \cdot 3^9 \cdot 5^2 \cdot 7^2 \cdot 11 \cdot 13 \cdot 17 \cdot 19$ and q = 13, 17 or 19. We get a contradiction by $|G_1/N| \nmid |G| = |L_2(q)|$.

Step 9. If G_1/N is a sporadic simple group, then $q = 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 59, 67, or 71. It is easy to check that <math>|G_1/N| \nmid |G| = |L_2(q)|$, we get a contradiction.

The other steps are very similar and we omit them.

Now, we have just seen if $G_1/N \cong L_2(q')$, where $4 \mid (q'-1)$ and q' is a prime power, $G_1/N \cong L_2(q')$, where $4 \mid (q'+1)$ and q' is a prime power or $G_1/N \cong L_2(q')$, where $4 \mid q'$ and q' is a prime power, then q = q' and $G \cong L_2(q)$. In the other cases we get a contradiction.

This completes the proof of the main theorem.

ACKNOWLEDGMENTS

The authors would like to thank the referees for their careful reading and useful suggestions which led us to improve the paper.

References

- P. J. Cameron, The power graph of a finite group, II, J. Group Theory, 13 (2010), 779-783.
- I. Chakrabarty, S. Ghosh, M. K. Sen, Undirected power graphs of semigroups, Semigroup Forum, 78 (2009), 410-426.
- G. Y. Chen, On Frobenius and 2-Frobenius group, J. Southwest China Normal Univ, 20 (1995), 485-487. (in Chinese)
- G. Y. Chen, Further reflections on Thompson's conjecture, J. Algebra, 218 (1999), 276-285.
- 5. G. Y. Chen, On Thompson's conjecture, J. Algebra, 185(1) (1996), 184–193.
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups, Clarendon, Oxford, 1985.
- G. Frobenius, Verallgemeinerung des Sylow'schen Satzes. Berl. Ber, (1895), 981–993. (In German)
- A. Hamzeh, A. R. Ashrafi, Automorphism groups of supergraphs of the power graph of a finite group, European J. Combin, 60 (2017), 82-88.
- 9. B. Huppert, Endliche Gruppen, I, Springer, Berlin, 1967.
- N. Iiyori, H. Yamaki, Prime graph components of the simple groups of Lie type over the field of even characteristic, J. Algebra, 155(2) (1993), 335-343.
- 11. A. Khalili, A. Iranmanesh, A characterization of linear group $L_2(p)$, Czechoslovak Math. J, **64** (139) (2014), 459-464.
- A. Khalili, S. S. Salehi, Some alternating and symmetric groups and related graphs, Beitr Algebra Geom, 59 (2018), 21-24.
- 13. A. Khalili, S. S. Salehi, Some results on the main supergraph of finite groups, *Algebra Discrete Math*, **30**(2) (2020), 172-178.
- 14. A. Khalili, S. S. Salehi, The small Ree group ${}^2G_2(3^{2n+1})$ and related graph, Comment. Math. Univ. Carolin, **59**(3) (2018), 271–276.
- 15. A. Khalili, S. S. Salehi, Recognizability of finite groups by Suzuki group, *Arch. Math.*, *Brno*, **55** (2019), 225-228.
- V. D. Mazurov, E. I. Khukhro, Unsolved problems in group theory, The Kourovka Notebook, (English version), ArXiv e-prints, (18), January 2014. Available at http://arxiv.org/abs/1401.0300v6.
- 17. A. S. Kondtratev, V. D. Mazurove, Recognition of alternating groups of prime degree from their element orders, Sib. Math. J, 41(2) (2000), 294-302.
- J. S. Williams, Prime graph components of finite groups, J. Algebra, 69(2) (1981), 487–513.